Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application.

نویسندگان

  • Gobind Das
  • Niranjan Patra
  • Anisha Gopalakrishnan
  • Remo Proietti Zaccaria
  • Andrea Toma
  • Sanjay Thorat
  • Enzo Di Fabrizio
  • Alberto Diaspro
  • Marco Salerno
چکیده

We propose a large-area SERS device with efficient fluorescence quenching capability. The substrate is based on anodic porous alumina templates with various pore size and wall thickness as small as 15 and 36 nm, respectively. The nano-patterned SERS substrate, with excellent control and reproducibility of plasmon-polaritons generation, shows very efficient enhanced Raman signal in the presence of intrinsically fluorescent molecules such as cresyl violet, rhodamine, and green fluorescent protein. This work demonstrates that, when the nanostructures are properly designed and fabricated, Raman and fluorescence spectroscopy can be used in combination in order to obtain complementary molecular informations. Theoretical simulation shows excellent agreement with the experimental findings. The enhancement factor is found to be 10(3)-10(4), with respect to flat gold surface when the molecules are supposed to be closely packed, with considerable fluorescence suppression, showing a promising disposable biosensor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanostructured surfaces and assemblies as SERS media.

Metallic nanostructures attract much interest as an efficient media for surface-enhanced Raman scattering (SERS). Significant progress has been made on the synthesis of metal nanoparticles with various shapes, composition, and controlled plasmonic properties, all critical for an efficient SERS response. For practical applications, efficient strategies of assembling metal nanoparticles into orga...

متن کامل

Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals

Ideal SERS substrates for sensing applications should exhibit strong signal enhancement, generate a reproducible and uniform response, and should be able to fabricate in large-scale and low-cost. Herein, we demonstrate low-cost, highly sensitive, disposable and reproducible SERS substrates by means of screen printing Ag nanoparticles (NPs) on a plastic PET (Polyethylene terephthalate) substrate...

متن کامل

Anemone-like nanostructures for non-lithographic, reproducible, large-area, and ultra-sensitive SERS substrates.

The melt-infiltration technique enables the fabrication of complex nanostructures for a wide range of applications in optics, electronics, biomaterials, and catalysis. Here, anemone-like nanostructures are produced for the first time under the surface/interface principles of melt-infiltration as a non-lithographic method. Functionalized anodized aluminum oxide (AAO) membranes are used as templa...

متن کامل

Plasmon based biosensor for distinguishing different peptides mutation states

Periodic and reproducible gold nanocuboids with various matrix dimensions and with different inter-particle gaps were fabricated by means of top-down technique. Rhodamine 6G was used as a probe molecule to optimize the design and the fabrication of the cuboid nanostructures. The electric field distribution for the nanocuboids with varying matrix dimensions/inter-particle gap was also investigat...

متن کامل

Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography.

Large-scale ordered arrays with dense hot spots are highly desirable substrates for practical applications such as surface-enhanced Raman scattering (SERS). In the past decade, most work has focused on using lateral gaps between two metal structures. However, the strength and density of the generated hot spots are limited to a 2D arrangement of nanostructures. In this work, we present a novel q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 137 8  شماره 

صفحات  -

تاریخ انتشار 2012